Arterial wave propagation

 Notions of pressure and flow wave propagation

 1-D flow models

» Pulse wave velocity

* Input impedance and characteristic impedance

« Wave separation into forward and backward running waves
* Transfer function

 Global models (3- and 4-element Windkessel models)



Feeling the pulse...
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A consultation by Susruta, the
Hindu physician, who is
portrayed feeling the pulse

Claudius Galenus (A.D.131-200). The
greatest sphygmologist of antiquity and
author of 18 books on the arterial pulse



Wave propagation

Arterial system:

« Complex network of viscoelastic tubes

« Complicated geometry

* Nonlinear elastic properties

» Non-newtonian fluids, large variation
of Reynolds numbers

in the arterial system
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Wave propagation
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1-D model of the arterial system

Continuity 8_A+8_Q:O
ot ox

Momentum 8Q+ d /le :_éap+”DTW
ot oJdx| A pox p

Area

Constitutive law

Pressure

* Three equations (Continuity, momentum and constitutive law A=f(p))
* Three unknowns:

1. Area (A),

2. Pressure (P) and

3. Flow (Q)




1-D model of the arterial system

Conservation of mass
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Conservation of momentum
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We have neglected convective acceleration (tapering) effects. If included, Eq. (2a) becomes:
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The wall shear stress is usually approximated by Poisseuille’s law: 7 =




Constitutive equation

A constitutive equation gives the relationship between pressure and cross-sectional area: A = f(p).

Area

Pressure

In analytical form, we may used the Langewouters formula:

Area

A=A,

1 + tan"(P_Po)
2 =

A/2 e, Slope relates to P,

PO

Pressure



Upstream boundary condition

» Specify either the (aortic) pressure or flow waveform.

» Most often the aortic flow waveform (figurer below) is used as the upstream boundary
condition
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Downstream boundary conditions

» Specify either:
1. pressure waveform
2. flow waveform or
3. the terminal (distal) impedance (Zr)

« The terminal immpedance model of vasculature beyond
the terminal point and characterizes the relation between
pressure and flow at the terminal point.

Boun ndition ifurcation

Apply a simple continuity in pressure and flow, such as
described below.

Indices:

i = last node of mother branch |

j = first node of daughter branch Il
k = first node of daughter branch Il

Branch IT

Branch I

Pi=Pj= Pk
Qi =Q; +Qx

Branch III

Qv



1-D model predictions
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Example: aortic stenosis
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Distal to aortic stenosis:

 severe damping of wave

» severe damping of high frequencies
» systolic values most affected
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Model

MRI
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Flowrate waveforms
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Model vs. measurements model Flow rate (Doppler)
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Measurements Model
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Flowrate waveforms

Middle cerebral Artery
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Pressure [mmHg]

Pressure Waveform Temporal artery
From in vivo tonometry measurements
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Wave travel & wave speed

Heart

-l >,

AORTA

/

Periphery

Distance

Pressure

Wave speed, ¢, is
c= AX/At

Wave speed as as a function of area
compliance, C4 = AA/AP, wall elastic
modulus, Ej,., wall thickness, h, and
blood density is:

C=\/A/p CA
(Newton-Young, or Frank,
or Bramwell-Hill equation)

c=\Ejnch/pD

(Moens-Korteweg equation)



Relation of wave speed to arterial compliance

A 2R
. . . /DQ 7’4 ?——- + — = O
6”"/4’(“”&3‘ ’3; * ’_2’2 =9 _Z—/m’e wf//ec_i 74"/'4#/0%: 2t D x
) 2 R ?é_ o+ L‘(‘_/ZZ =0
jémm,ﬁum-’ 7_@4-_4-—2-}’2'——‘:0 oY~ £l D
2% e 2x é
, / Y
//ﬂ/e areoc wm///acﬂzc ) %zwea/ os: (A = 973
24 AR P
It 2p 2t 2%
The LD How 7&«1&/'097;* 77 é& ye wirittern aS:
25 2%
(A?fﬂL?e:D Goptimem O " A P [
27 9% -~ 2¢ <ot = e _ A 0T Ware 70“2&.074.
8 4_;4_/,)/?:O R A’)Z'P _ s 2t L Cy o%
2t L % L= o =
2x ot e “Ix
2 A

]

L is: ¢
where FHhe wave pee /S o

Newton-Young

A L
or c = —E a Fr(;rnk equation The wave speed, ¢, is often also called
or 9 Pulse Wave Velocity, PWV

Bramwell-Hill



Relation of wave speed to arterial wall elasticity
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Foot-to-foot method to derive wave speed

140+ ﬂl —— Asc. Aorta

—— Abd. Aorta

Dorsalis Pedis

Aty * Foot of wave

0.5s

Ax s valid only at the foot of the wave, were the wave is

¢= ‘A; unidirectional (no reflected waves)



Derive PWV from the relation of area to flow

Heart Aorta

Moment: t AV =AA-Ax
AV g4 A
At At
AA Moment: t + At
AQ=AA-c
AQ




PWYV vs. Pressure and age
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Pulse wave velocity (PWV)
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Wave propagation without attenuation
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Wave propagation with attenuation
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Womersley (1955, 1957) developed a complete theory for wave propagation of a viscous fluid in an elastic and viscoelastic
tube, where vy is given as function of the Womersley number, arterial dimensions and wall viscoelastic properties.



Characteristic impedance, Z.
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Methods to derive the characteristic impedance, Z.
P N t_,

2 i Definition: Characteristic impedance, Z, is the ratio
- — of pulsatile pressure to flow in case of
@\ unidirectional waves (no reflections)

Q
_/\_t_’

1) Direct (definition)

A F domai 7= L)
. Frequency domain: e T AN
HEne O(w)

AP Attention: good only for unidirectional waves
B. Time domain: 7 =——
c AQ

3) From area compliance and geometry: 7 =

c

w

1
CA

4) From wave speed and geometry: 7 — E
C

A



Example: estimate aortic pulse pressure from cardiac output

Assume that aortic flow can be approximated by a triangular wave during
the ejection phase, as shown in the Figure. Estimate the aortic pulse
pressure assuming that:
1. Cardiac output is 5.4 lit/min

2. Heart rate is 72 beat/min

3. Duration of the ejection phase is Tej = 250 ms
v 4. Ascending aortic diameter is 2.6 cm

5. The wave speed in the ascending aorta is 4.5 m/s
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Wave reflections

—_— — —>
aa |
<
———=> Incident or forward wave \

-+— Reflected or backward wave

Reflected waves are generated when the transmission
properties (characteristic impedance) change abruptly
* bifurcations

- stenoses

* aneurisms

- etc



Wave reflection: schematic interpretation

Heart

AORTA

Periphery



Wave reflection and transmission at bifurcations
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Wave reflection and transmission at bifurcations (2)
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Wave reflection in the aorta: visual interpretation

\5 lliac Artery
/

1 second




Augmentation index

Al = AP/PP
t 1
AP
v

PP

v |

THE AUGMENTATION INDEX (Al) is the augmented pressure (AP)
divided by pulse pressure (PP). Calibration of blood pressure is not
required.



Wave reflections:
augmentation by peripheral occlusion

A s

10 mmHg 20 mmHg

T Asc. Ao

.............
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100 mmHg
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DISTINCT REFLECTION IS INCREASED by mechanical compression of both iliac arteries.



Wave reflections & wave shape

100 Valsalva strain Valsalva release

. JINT

) JUJ L

| 18 | 21.3

cm/s

100+

mmHg

DURING THE VALSALVA strain pressure and flow in systole become alike because
diffuse reflections decrease in amplitude and wave speed decreases so that
reflections return in diastole.



Wave reflections & wave shape
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Wave reflections & wave shape

Negative augm. /-

Positive augm. _~
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Aortic pressures in young and old subjects

Young Old
Type A

Type C




Fourier analysis of arterial waves
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Fourier analysis of arterial waves

100 HARMONICS RECONSTRUCTED
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In general, 10 to 20 harmonics are enough to get an accurate representation of
the pressure and flow wave



Input impedance

7 =P /Q Definition: Input impedance is the ratio of Pressure (P) to flow
in — (Q) expressed in the Fourier domain

* Zix1s defined in presence or absence of reflections
e In case of no reflections, Zi, = Z.
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Input impedance
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Pressure (P) and
flow (Q) expressed
in the Fourier
domain



Reflection coefficient at a specific arterial location
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Example: input impedance in a frictionless tube with a fully blocked end
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Example: input impedance in a frictionless tube with a fully blocked end
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Input impedance in the young (type C) and the aged (type A)

Type A

Type C

Frequency (Hz)
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TYPES OF BEATS RELATE TO
INPUT IMPEDANCE. In older
subjects, Type A, with high pulse
wave velocity, reflections return in
systole and augment the pressure
wave. The impedance oscillates
about the characteristic impedance.
In young subjects, Type C,
reflections are smaller and return in
diastole. The impedance oscillates
less.



Input impedance

Valsalva strain Post strain

IO SANTAN

Reflection appears

Pressure
(mmHgQ)
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VALSALVA STRAIN increases
thoracic and abdominal pressures.
The lower transmural pressure
increases arterial compliance and
lowers pulse wave velocity.
Reflections diminish and return
later, in diastole. An almost
reflectionless situation appears
where pressure and flow resemble
each other and input impedance
equals aortic characteristic
impedance. In the release phase
the reverse is true, reflections
return in systole and are large.



Effects of hypertension

Normal Hypertension

A

Higher peripheral resistance
Lower compliance
Higher wave speed

~ v . Higher characteristic impedance

IN HYPERTENSION peripheral
resistance and thus mean pressure is
increased (1). Compliance is
decreased resulting in a less rapid
decrease in impedance, with
frequency (2) and a higher
characteristic impedance (4). Pulse
pressure, PP, increases (2). Wave
speed is increased, the impedance
oscillates more around the
characteristic impedance, the first
impedance modulus moves to higher
frequencies (3) and the wave is
augmented (3).

INE

Impedance modulus

Frequency
23.4
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Input impedance examples: hypertension (I)
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Fig. 16.13 (A) Impedance modulus and phase in a group of normal subjects (closed circles) and in a group of
hypertensive patients of similar age (closed squares). (B) Change in ascending aortic impedance of hypertensive patients
with infusion of nitroprusside to restore normal mean arterial pressure (open circles). Closed circles represent data from
normal subjects as in (A). Reproduced from Merillon et al. (1982).



Wave analysis

—— Total pressure

—— Backward pressurs
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Separation of waves into forward and backward running components

e
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Separation of waves into forward and backward running components

f\\\ ‘P forward Qrorward
P forward

T +
\/\ ‘ P backwara Qpackward
Phrackward - f\/
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Separation of waves into forward and backward running components

f\\\ Forward running
/\/\ pressure wave, P

I\/Ieasured pressure wave,
= Ps+ Py, Backward running

Nressure wave, Py,
f\ Forward running

flow wave, Qr

Measured flow wave, L—————____L

Qm= Qs+ Qp Backward running

’\/‘ flow wave, Qp
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Analysis of arterial waves

Type C Type A

Pressure
80 mmHg

<« Amplitude of _,
_ forward wave
Amplitude of

 gEseiedtedwa AT
¥

Arrival time of /
reflected wave
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Aortic pressure

f N 120 T T T T

100 R

Pressure [mm Hg]
(0 0]
o
|
|

60 | | | |

Aortic pressure defines/used for:
- Cardiac afterload

« Augmentation index

- Compliance estimation

- Systolic & diastolic pressure




Transfer function

Aortic pressure

Inverse Fourier _

Analysis

Transfer function:
Nw) = 'Dp(w)/'Dao(CU)

Amplitude ratio
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Fhase (radars!

Amabuce

Pressure transfer from periphery to the aorta

Aortic Radial
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Transfer function along a single arterial segment
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Physical basis of pressure transfer

Stergiopulos et al., Am. J. Physiol., 1998

Time Shift of Peripheral Forward and Backward Waves gives Aortic Wave
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Pressure and velocity
(mmHg & cm/s)
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Fire Engine as model

WINDKESSEL
[CUSHION]

FIRE HOSE
[ CONDUIT ]




Fire Engine as model

canal pump windkessel

| - +— compliance
vein heart large very small

W
arteries



2-element windkessel model (Otto Frank,

1899)
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2-element windkessel model (Otto Frank, 1899)

R
ﬁ R:i
Q
. out dP P
. it R
an v QOUt C= d—V
dP

Method to derive total arterial compliance:
a) Fit an exponential decay function to the diastolic part of the curve

b) The characteristic time constant r = RC

c) Calculate total peripheral resistance as mean pressure over mean flow: r=L
d) Calculate total arterial compliance as: C:% ¢
P _t

P —_ [)Oe RC

\\ T=RC (characteristic time constant)
N
N
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Electrical analog of the 2-element windkessel model
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Three-element windkessel

Three-element windkessel
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3-element windkessel

1001 = .
2 a0 Aortic Pressure
=
0 Ventricular Pressure
10
@
I = J\Mx' Aortic Flow
o 0.5s
Characteristic
Flow

Impedance, Z.

Venous Reservoir

Windkessel
(Compliance, C)
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Pressure [mm Hg]

120

100

80

The problem with the 3-element WK

Best fit

0.5

Actual
Three-element WK fit

Pressure [mm Hg]

With “true” parameters
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100

80

Actual
Three-element WK
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Modulus [mm Hg s/ml]

0.1

0

Why the 3-element model falls short

Three-element windkessel

| 1 |

—— Best fit in time domain
— With “true” values

0

5 10 15 20
Frequency [Hz]

Characteristic impedance
forces low-to-mid frequency
input impedance to be much
higher. Hence in a time
domain fit this leads to
estimates of:

1.Higher compliance
2. Lower characteristic
impedance



Windkessel models

Two-element windkessel Three-element windkessel Four-element windkessel
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Pressure [mm Hg]

Fit in time domain
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Comparison of input impedances

mmm Measured values

Two-element WK
—— Three-element WK
Four-element WK
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Arterial compliance

C = dV/dp

State of the arterial tree
Heart load and performance

* Wave propagation and reflections

e Relation to arterial disease



Classic decay time method

P

\\ Limitation: Q=0
\\ *Ascending aorta only

*Regurgitation



Pressure [mm Hg]

Distributed vs 2-el Wk model

— Flow

— Pressure (distributed model)
— Pressure (2-element WK)
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IViodulus
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Distributed vs 2-el WK
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